
Rapid Identification of Architectural Bottlenecks
via Precise Event Counting

John Demme Simha Sethumadhavan
Computer Architecture and Security Technologies Lab

Department of Computer Science
Columbia University
New York, NY, USA

{jdd,simha}@cs.columbia.edu

ABSTRACT
On-chip performance counters play a vital role in computer
architecture research due to their ability to quickly provide
insights into application behaviors that are time consuming
to characterize with traditional methods. The usefulness of
modern performance counters, however, is limited by ineffi-
cient techniques used today to access them. Current access
techniques rely on imprecise sampling or heavyweight ker-
nel interaction forcing users to choose between precision or
speed and thus restricting the use of performance counter
hardware.

In this paper, we describe new methods that enable pre-
cise, lightweight interfacing to on-chip performance coun-
ters. These low-overhead techniques allow precise reading
of virtualized counters in low tens of nanoseconds, which
is one to two orders of magnitude faster than current ac-
cess techniques. Further, these tools provide several fresh
insights on the behavior of modern parallel programs such
as MySQL and Firefox, which were previously obscured (or
impossible to obtain) by existing methods for characteriza-
tion. Based on case studies with our new access methods,
we discuss seven implications for computer architects in the
cloud era and three methods for enhancing hardware coun-
ters further. Taken together, these observations have the
potential to open up new avenues for architecture research.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Measurement techniques; B.8.2 [Hardware]:
Performance and Reliability—Performance Analysis and
Design Aids

General Terms
Measurement, Performance

Keywords
Performance Evaluation, Hardware Performance Counters,
Locking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

1. THE NEED FOR RAPID, PRECISE
EVENT COUNTING

These are exciting times for computer architecture re-
search. Today there is significant demand to improve the
performance and energy-efficiency of emerging, transforma-
tive applications that are being hammered out by the hun-
dreds for new compute platforms and usage models. This
booming growth of applications and the variety of program-
ming languages used to create them is challenging our ability
as architects to rapidly and rigorously characterize these ap-
plications. Consequently, developing optimizations for these
applications is becoming harder.

On-chip performance counters offer a convenient alterna-
tive to guide computer architecture researchers through the
challenging, evolving application landscape. Performance
counters measure microarchitectural events at native execu-
tion speed and can be used to identify bottlenecks in any
real-world application. These bottlenecks can then be cap-
tured in microbenchmarks and used for detailed microarchi-
tectural exploration through simulation.

Recently, some hardware vendors have increased coverage,
accuracy and documentation of performance counters mak-
ing them more useful than before. For instance, as shown in
Figure 1, about 400 events can be monitored on a modern
Intel chip, representing a three-fold increase in a little over
a decade. Despite these improvements, it is still difficult to
realize the full potential of hardware counters because the
costly methods used to access these counters perturb pro-
gram execution or trade overhead for loss in precision. We
redress this key issue in this paper with cheaper new access
methods and illustrate how these methods enable observa-
tion of a range of new phenomena.

Popular tools used for accessing performance counters to-
day such as PAPI [12], OProfile [13] or vTune [17] attempt
to read performance counters via hardware interrupts or
heavyweight kernel calls. An inherent downside of kernel
calls is that they interrupt normal program execution and
slow down the program thereby affecting the quantity being
measured. To minimize these perturbations, most profilers
resort to occasionally reading these counters and extrapolat-
ing full program statistics from the sampled measurements.
While this extrapolation is necessarily imprecise, the error
introduced by the process has been acceptable when profil-
ing hotspots in serial programs.

Traditional sampling, however, has fundamental incom-
patibilities for parallel programs which have become com-

!"

#!!"

$!!"

%!!"

&!!"

'!!"

()*+,-"
(./"0#11'2"

()*+,-"33"
0#1142"

()*+,-"333"
0#1112"

()*+,-"&"
0$!!!2"

5/.)"6/7/"
0$!!82"

5/.)"$"
0$!!82"

5/.)"94"
0$!!:2"

!"#$%&'()*+,*)-(#$)#.*,%&'+"(#+*("/&0+1$*,/$&

;<)*=>"?"@A>B>"0@/*9=/.AC7)"5/*D9+/*>2"

Figure 1: Number of countable conditions using
Intel’s performance monitoring framework through
several generations.

monplace with the availability of multicores. Traditional
sampling methods are likely to miss small critical sections
because they do not constitute the hottest regions of the
code. Amdahl’s law, however, teaches us that optimizing
critical sections is necessary to ensure scalability, even if the
time spent in critical sections is relatively low [9]. More-
over, as we will discuss in Sec 3.1, irrespective of the size,
it is not easy to correctly monitor critical sections. Per-
formance characterization of parallel programs with perfor-
mance counters calls for simple, lightweight access methods
that can enable precise performance measurement for both
hot and cold code regions.

In this paper, we describe novel lightweight techniques
for accessing performance counters and report new applica-
tion behaviors which are difficult to capture with existing
access methods. Our precise access method, embodied in
an x86-Linux tool called LiMiT (Lightweight Microarchi-
tectural Toolkit), requires less than 12 ns per access and is
over 90x faster than PAPI-C [12] and 23x faster than Linux’s
perf event, tools that provides similar functionality.

Based on three case studies with LiMiT using unscaled,
production workloads we put forth several recommendations
for architecture researchers.

In our first case study, we measure synchronization regions
in production applications (Apache, MySQL and Firefox) as
well as the PARSEC benchmark suite. Our measurements
show that Firefox and MySQL spend nearly a third of the ex-
ecution time in synchronization which is 10x more than the
synchronization time in PARSEC benchmarks. These re-
sults indicate that synchronization is used differently in pro-
duction system applications than traditionally-studied sci-
entific/numerical applications and architects must be aware
of these differences. Performing similar measurements with
PAPI-C show inflated synchronization times due to high
measurement overheads, drastically changed cycle count ra-
tios and increased instrumentation overheads from 42% to
over 745%. Some workloads such as Firefox could not even
run properly with PAPI-C because of the high overheads.

Our next case study examines the interaction of programs
with the Linux kernel via popular library calls. This interac-
tion has not received much attention because of the difficulty
in running modern, unscaled web workloads on full-system
simulators. Our investigation reveals that production ap-
plications spend a significant fraction of execution cycles
in dynamically linked libraries and operating system calls.

Further, we find that routines in these two segments show
distinctly different microarchitectural performance charac-
teristics than userspace behavior.

The third and final case study demonstrates LiMiT’s
breadth of utility by conducting longitudinal studies of mod-
ern software evolution. By examining the evolution of lock-
ing behaviors over several versions of MySQL, we investigate
if there has been a return on investment in parallelizing the
software for multicores. This study illustrates how the util-
ity of precise counting goes beyond traditional applications
in architecture, compilers and OS, and that well-architected
performance counting systems can have wide and deep im-
pact on several computer science disciplines.

Finally, we suggest modest hardware modifications —
based on our experiences with LiMiT — that can increase
the precision and utility of performance counters even fur-
ther. Specifically, we suggest (1) a destructive performance
counter read instruction for lower overheads (2) 64-bit coun-
ters, and instructions that can read and write to the full 64
bits to avoid overflows and (3) integration of counter selec-
tion into the read instruction. The combination of these
three features would allow single instruction counter read-
outs and resets.

The rest of this paper is laid out as follows: in Section
2 we describe the evolution of and existing performance
counter systems. Section 3 describes access techniques used
in LiMiT and compares LiMiT to existing approaches.
The case studies are presented in Sections 4, 5 and 6.
We present suggestions for enhancing performance counters
with hardware support in Section 7 and closing thoughts are
presented in Section 8.

2. PERFORMANCE COUNTERS REVIEW
Performance counter based studies have proved exceed-

ingly valuable in the past, and many influential research
studies have been based on performance counter measure-
ments of production systems. Emer and Clark shaped quan-
titative computer architecture with their seminal work on
characterization of the VAX system using hardware coun-
ters [8]. Anderson et al. described results from system wide
profiling on Alpha machines [4]. Ailamaki et al. describe re-
sults of profiling DBMS applications [3]. Keeton et al. char-
acterized OLTP workloads on the Pentium Pro Machine [10].
Like these papers, we use novel performance measurement
methods to study contemporary applications.

Performance counters started appearing in commercial
machines in the ’90s. The performance counter access fa-
cilities in these machines were intentionally minimalist to
reduce area overheads. For instance, initial designs of the Al-
pha 21064, one of the first machines to include performance
counters, did not even have read/write access to the perfor-
mance counters. To keep chip-area overhead tiny, the coun-
ters interrupted processor execution when a counter over-
flowed, allowing only basic sampling support based on inter-
rupts [16]. As the usefulness of the counters became clear
and transistors became cheaper, later Alpha chips and other
vendors enhanced their performance counter infrastructure.
By the late ’90s, all of the major processor lines, including
Pentium, PPC, UltraSparc, PA-RISC and MIPS processors
included performance counters and simple access methods.

A common feature of many of the counter designs in early
processors – and a source of major frustration to date – is
that all of these counters were accessible only in the priv-

ileged mode, thus requiring a high overhead kernel call for
access. This problem was mitigated to an extent in the
MIPS R10000 [18] (1995), which included support for both
user-/kernel-level access to the performance counters. Later
x86 machines from Intel and AMD have included similar
configurable support. However, the software used to access
the counters (kernel and libraries) often do not enable user
space counter reads by default, likely to allow them to mask
the complexity of counter virtualization behind the kernel
interface. A recent proposal from AMD [2] published in
2007, discusses lightweight, configurable user space access.
The proposed scheme appears promising but hardware im-
plementations are not yet available.

Hand in hand with the hardware improvements, many
software tools have been developed over the years to obtain
information from performance counters. These tools can
either pull data from the performance counters on demand
(precise methods) at predetermined points in the program or
operate upon data pushed by the performance counter (im-
precise methods) during externally-triggered sampling inter-
rupts. Intel’s vTune [17] and DCPI/ProfileMe [7] are some
commercial examples of tools that support only imprecise
access methods. An open source example is the Perfor-
mance API (PAPI) which was created in 1999 to provide
an standard interface to performance counters on different
machines [12]. OProfile [13] is another Linux profiling tool
that provides interrupt-based sampling support. With these
tools, users can extrapolate measurements obtained from
samples collected either at predetermined points in the pro-
gram or during sampling interrupts triggered by user speci-
fied conditions e.g., N cache misses. A general drawback to
these sampling methods is that it introduces error inversely
proportional to the sampling frequency. As a result, short
or cold regions of interest are difficult to measure precisely.

Examples of tools that provide precise performance
monitoring access methods for Linux are perfmon2 [14],
perf event [1] and Rabbit [15]. Perfmon2 is an older Linux
kernel interface which provides both sampling support and
precise counter reads, though the precise read support re-
quires system calls. The newly introduced perf event inter-
face is intended to replace perfmon2 but still uses system
calls (the read syscall, specifically) for precise access to per-
formance counters. Rabbit is an older access method written
to avoid system calls, but provides none of the virtualization
features of LiMiT, perfmon2 or perf event.

All these tools require that performance counters be read
by the kernel, requiring heavyweight system calls to obtain
precise measurements. Unlike the above tools, our access
techniques provide both precise and low overhead measure-
ments by allowing userspace counter access. We compare our
measurements to PAPI-C and perf event, showing that by
enabling userspace access, LiMiT introduces less perturba-
tion than PAPI, and decreased overheads enable accurate,
precise profiling of long running or interactive production
applications.

3. ENABLING LOW-OVERHEAD
PERFORMANCE COUNTER ACCESS

The key to low overhead counter reads is to avoid kernel
calls by allowing user applications to directly read the per-
formance counters. In this section, we detail the methods
used to implement our interface and compare the overheads

of our performance counter access method to existing meth-
ods.
Enabling userspace access is a three step process:

§ 1: Stock Linux kernels do not allow direct user space access
to performance counters. As a simple first step, we set the
configuration bit (an MSR in x86) to allow user access.

§ 2: Performance counters cannot be directly configured to
monitor events of interest (e.g., instructions retired) from
userspace. We add a system call to the Linux kernel to
configure the counters. Since most applications are likely to
set up these counters once or few times per program we do
not take any special measures to optimize this step.

§ 3: A more involved third step is to enable process isola-
tion by virtualizing the operation of the performance counter
hardware, allowing multiple programs to use one hardware
instance of the performance counters. Without this support,
programs would read events which occurred while other pro-
grams were executing, resulting in incorrect results and also
opening up side-channels that can be used to infer informa-
tion about program execution.

In theory, virtualization support should be as simple sav-
ing and restoring the performance counters during context
swaps just like any other register. However, we need to deal
with the possibility of performance counters overflowing. In-
tel’s 48 bit counters can overflow every 26 hours, so overflows
are likely for long running applications. Additionally, Intel
chips prior to Sandy Bridge allowed only 32 bit writes to
the counters so after only 1.4 seconds the kernel can find
itself unable to correctly restore the counter when a process
is swapped back in.

We work around overflows by detecting overflow condi-
tions and accumulating the overflowed values in user mem-
ory. When a process wants to read a performance counter
it must get the current value via rdpmc then fetch and add
the contents of the overflow value in memory. However, this
set of instructions must be executed atomically; if an inter-
rupt and overflow occurs during their processing (before the
memory fetch but after the rdpmc) then the value read will
be off by the previous value of the counter as the kernel has
zeroed the already read counter register and incremented
the as-yet-unread overflow variable.

Two obvious solutions to ensure atomic execution, turning
off interrupts or protecting the critical section with a lock,
cannot work in this context. If we disable interrupts, the
executing process would never be swapped out and could
starve other applications; allowing a user process to disable
external interruption is dangerous. Locking is even more
problematic. Our algorithm requires the kernel to update
the user space memory location that keeps track of the per-
formance counter values. To do this the kernel must obtain
a lock when the process is being swapped back in. However,
if the process holds the lock, then the kernel cannot continue
and the process will never resume to release the lock. In this
situation deadlock is guaranteed.

Linux kernel interfaces such as Perfmon2 and perf event
deal with this problem by placing all sensitive code in the
kernel where techniques like disabling interrupts can operate
normally. By doing so, however, they add significant over-
head to counter reads in the form of system calls to access
counters.

To solve this problem, we use an approach similar to Ber-
shad et al. [5] (Figure 2). We speculatively assume that

mov $0, %edx
rdpmc
shl $32, %rdx
orq %rax,%rdx
addq ovfl,%rdx

Program	 Execu-on
Counter	 Reading	 Code

Process Swap
Kernel saves PMC

Kernel	 Scheduling	 (Timer	 Interrupt	 Handler)

Different Program
Executes

Process Swap
Kernel attempts to restore PMC

Counter Overflow!
Kernel increments overflow
variable and resets counter:
 ovfl += PMC0
 PMC0 = 0

PMC0	 >=	 2³¹
PMC0	 <	 2³¹

Detect Counter Read
Is the program currently
executing a PMC read?

Examine interrupted instructions
and look for read pattern

No

Atomicity Violation!
Error handler:

reset %rdx, %rax before
returning to program

Yes

Special	 kernel	 handling	 required
to	 avoid	 double	 counCng.

Regular	 Cmer	 interrupt	 processing

T
im

e
r

 I
n

t
e

r
r

u
p

t
s

Return to
Program

TransiCon	 to	 kernel

Figure 2: LHS figure shows LiMiT’s five instruction counter read sequence (dotted box) embedded as part of
regular program execution. As shown, program execution can be interrupted when the program is executing
uninstrumented code or when executing user space code for reading counters. Interrupts received during
counter reads require special handling to avoid double counting bugs. RHS figure shows special modifications
(highlighted boxes) that provide detection of interrupted counter reads and fixes for double counting bugs.

there will be no atomicity violation, but build detection
and error handling into the kernel code for cases where such
events happen. With this approach, there is no additional
overhead added to counter reading code in user space and
overhead is only incurred on relatively infrequent counter
overflows. To detect whether or not an application is in the
middle of a counter read during a counter overflow we sim-
ply check the pattern of instructions before the process was
interrupted (pointed to by the process’ instruction pointer).
If a counter read is detected, the kernel zeros the process’
registers (%rax and %rdx in the x86 example) to match the
new (overflowed) contents of the performance counter. Once
resumed, the program will behave as if the interrupt, con-
text switch and overflow had occurred immediately prior to
the read of the performance counter. The primary difference
from the approach in Bershad et al. [5] is that they rewind
execution to the beginning of the critical section instead of
fixing up the correct counter values as we do.

3.1 Comparison to Sampling
Sampling is typically used in two ways: interrupt based or

by polling. In interrupt based sampling, interrupts are trig-
gered when a pre-determined event such as number of com-
mitted instructions reaches a pre-determined count. These
interrupts are received by the OS and passed on to the appli-
cation. In polling based sampling, the counters are precisely
read out once out of every N times a code region is executed
to reduce overhead. While both approaches can have low
overheads, there are a number of situations in which neither
approach works well.

For example, Figure 3 contains a critical section from
MySQL which accounts for 30% of MySQL’s overall criti-
cal section time. Let us say that we are interested in mea-
suring time spent in critical sections using interrupt based
sampling. If K of the N samples were in critical section we
would extrapolate that K/N of the total time was spent in
critical sections. However, there are several complications
with this approach. In the above example, a sampling in-
terrupt routine which fires during the critical section, would
have difficultly determining whether or not a lock is held
because the locks are executed based on the if conditional
preceding the lock.

An alternative to interrupt sampling is to use precise ac-
cess methods intermittently. In this case, explicit perfor-
mance counter reads would have be used every time a lock
is acquired or released. To reduce overhead, performance
counter reads could execute only once out of every N times
the region is entered, and the total time could be extrapo-
lated from this measurement. While this method is effective
in reducing overall overhead, the overheads for each precise
read remain high. As a result, large perturbation is intro-
duced immediately before and after the region of interest
when measurement is actually occurring. We would there-
fore expect measurements for small regions to be inflated.
We observe this effect during our Case Study A in Figure 5b.

In many of these situations in which sampling or heavy-
weight precision present difficulties, ad hoc solutions are
possible. However as our case studies demonstrate, a low-
overhead, precise measurement like LiMiT is sometimes the
right tool for the job.

if (info->s->concurrent_insert)
 rw_rdlock(&info->s->
 key_root_lock[inx]);

changed=_mi_test_if_changed(info);
if (!flag) {
 switch(info->s->
 keyinfo[inx].key_alg) {
 /* 37 lines omitted */
}
if (info->s->concurrent_insert) {
 if (!error) {
 while (...) {
 /* 10 lines omitted */
 }
 }
 rw_unlock(&info->s->
 key_root_lock[inx]);
}

40
41

42
43
44

82
84
85
86

97
98
99

100

Conditional Locks

Figure 3: Code excerpt from MySQL 5.0.89,
mi_rnext.c. The critical section shown here accounts
for 30% of all the time spent in critical sections.

#define rdtsc(X) \
asm volatile ("rdtsc;" \
 "shl $32, %%rdx;" \
 "orq %%rax, %%rdx;" \
 : "=d"(X) : : "%rax");

int main(void) {
 uint64_t b, e;
 rdtsc(b);
 for (uint64_t i=0;
 i<ITER; i++) {
 // ... some operation
 }
 rdtsc(e)
 printf("Time per op: %lf\n",
 ((double)e - b)/ITER);
}

(a) RDTSC Example

!"#$!!%
&"#$!'%
("#$!'%
)"#$!'%
*"#$!'%
+"#$!)%

!% *% +)% &(% ,&% (!% (*% ')%)(%!
"#
$%
&#
'(
)*
+#
,'
-'
.
/'

0123#$'45'67$#%8,'9.:';'(4$#'<),=#2>'

?@#*='45'A$4*#,,'B,4+%C4:'4:'A#$54$2%:*#'D4:E=4$E:&'

-./01% 2343/%

No	 Resource	
Sharing

Core	 Sharing
(SMT)

Process	
Swapping

(b) RDTSC Isolation Effects

Figure 4: LHS: typical rdtsc usage example. RHS: Process isolation in LiMiT prevents other threads and
processes from directly affecting event counts. RDTSC has no such ability.

3.2 Comparison to PAPI and perf_event
For years, PAPI has been the standard library to write

cross platform performance monitoring tools. As a library,
it relies on kernel interface support; traditionally it has used
perfmon2 on Linux. In contrast, perf event is the newest
Linux kernel interface. It is touted to be faster and more
featureful than perfmon2 and will thus eventually replace
it. However, due to its relative youth, library support for
perf event remains poor, placing burden on the user but
yielding better speeds as there is no library overhead.

Any performance counter readout call (be it PAPI or
LiMiT) will cost some number of cycles. To examine this
overhead, we construct a short benchmark which reads a
counter configured to count three events (cycles, branches
and branch misses) 107 times each. With this high num-
ber of iterations, we can report the wall time for compari-
son of the overheads and compute the cost of each readout
call. The results are presented in Table 1. On our Xeon
5550-based system, the average for LiMiT’s five instruction
readout code is 37.14 cycles. Since LiMiT does not require
a system call for each sample, it is substantially faster com-
pared to PAPI-C (by 92x) and perf event (by 23x).

In Section 4, we instrument MySQL to examine locking,
unlocking and critical section timing (setup described in de-
tail in the following section). Figure 5b shows that using
LiMiT incurs a 42% cycle increase over uninstrumented ex-
ecution. When the same instrumentation is performed us-
ing PAPI, a 745% user space cycle overhead is introduced
and 97% is incurred with perf event. Both PAPI’s and
perf event’s actual overheads, however, are much larger since
over 90% of their overheads occur in kernel space (as shown
in Table 1) but are not counted in figure 5b. As a result,
we would expect both PAPI and perf event instrumentation
to perturb execution more than LiMiT making the results
virtually unusable.

Time PAPI-C perf event LiMiT Speedups
User 1.26s 0.53s 0.34s 3.7x 1.56x

Kernel 30.10 s 7.30s 0s ∞ ∞
Wall 31.44s 7.87s 0.34s 92x 23.1x

Table 1: Speedups of LiMiT, perf event, and PAPI
(107 reads of 3 counters) plus LiMiT’s speedup over
PAPI and perf event respectively.

Overheads also directly affects usability. We attempted
to instrument and measure modern cloud workloads such as
Firefox, MySQL and Apache with both LiMiT and PAPI.
Firefox was unresponsive to input with PAPI, while it oper-
ated with no discernible slowdown when instrumented with
LiMiT. We also measured that Apache served 9,246 re-
quests per second with LiMiT instrumentation and 9,276
requests per second without instrumentation. These minor
changes in speed demonstrate LiMiT’s low overhead.

3.3 Comparison to RDTSC Measurements
Using rdtsc, the read time stamp counter instruction on

x86 architectures, is de rigeur in userspace lightweight mea-
surement. The time stamp counter is a free running counter
present on all x86 machines. It simply counts bus cycles
(uncore cycles for modern Intel processors) and most oper-
ating systems allow programs direct access to it. Since rdtsc
is simple and lightweight, programmers will often use it to
measure the time spent in short or long regions of code or
to judge the effect of code changes on performance. LiMiT,
however, offers capabilities that are superior to plain rdtsc:
aside from offering a variety of countable events besides bus
cycles, LiMiT provides process isolation which allows each
process to shield its measurements from other processes’ di-
rect interference. While one could apply many of LiMiT’s
techniques to rdtsc, this does not occur in practice so we
compare against rdtsc without any such additions.

To examine the effect of process isolation, we construct a
simple microbenchmark which executes non-memory opera-
tions across multiple threads on an 8 core system, allowing
the operating system to schedule them onto cores. We then
compute the average amount of time each operation takes
using both rdtsc and LiMiT. We would expect the per-
formance of each operation to degrade as resource sharing
increases. There should be little or no performance degra-
dation with 8 or fewer threads, mild degradation from 8 to
16 threads as SMT is utilized then a little more performance
degradation above 16 threads as threads are swapped in and
out. The data presented in Figure 4b confirm these expec-
tations when using LiMiT. rdtsc, however, incorrectly re-
ports massive, linearly increasing performance degradation
above 16 threads as a result of its lack of process isolation.

4. CASE STUDY A:
LOCKING IN WEB WORKLOADS

Usage patterns of computers have changed drastically over
the past decade. Modern computer users live in the cloud.
These users spend most of the their time in web browsers
– either on a traditional desktop or mobile device – which
moves computation to backend servers. As a result, there
are two separate and extremely important workloads in the
web model: the frontend, consisting of web browsers and
Javascript engines, and the backend, consisting of HTTP
servers, script interpreters and database engines. Further,
the workloads of these applications have also changed. Of-
ten web pages rely far more on Javascript than ever before
and database operations are no longer well modeled by tra-
ditional transactional benchmarks, often favoring scalability
and speed over data security and transactional atomicity
and durability.

We briefly characterize the synchronization behavior of
several popular web technologies. Specifically, this study
aims to answer the following questions: (1) Is synchroniza-
tion a concern in web workloads and what are the locking
usage patterns? (2) What future architecture directions can
optimize web workloads? For comparison purposes, we also
measure and analyze the PARSEC benchmark [6]. As a
numerical workload, PARSEC is likely representative of tra-
ditional (scientific computing) notions of parallel program-
ming and may be different from web technologies.

Necessity of LiMiT There are three features offered by
LiMiT which enable this study: precise instrumentation,
process isolation and low-overhead reads, not all of which
are simultaneously offered by other technologies. Precision
is necessary because we are capturing very short regions of
executions – lock acquires/releases and critical sections –
which are likely to be missed by sampling techniques. Pro-
cess isolation (which is not offered by the traditional rdtsc)
is required since we are operating in a multi-threaded en-
vironment with I/O, so processes are likely to be swapped
in and out often. Finally, LiMiT’s low-overhead counter
readout routine is required to prevent large perturbation
from skewing results. To further examine LiMiT’s lowered
overhead, we will compare results obtained with LiMiT to
results obtained with PAPI.

Experimental Setup To gain insight into modern web
workloads, we examine the following software and input sets:

Firefox A popular, open-source web browser, we ran
Mozilla Firefox version 3.6.8. We visited and inter-
acted with the top 15 most visited sites, as ranked
by Alexa. Additionally, we used two web apps from
Google, Gmail and Google Reader, two applications
which rely heavily on AJAX, asynchronous Javascript
and XML.

Apache The Apache HTTP server is, according to
Netcraft, the most popular HTTP sever with 56% mar-
ket share as of August 2010. We evaluated the latest
stable version, 2.2.16, using the included “ab” (Apache
Benchmark) tool to fetch a simple static page. A total
of 250k requests were served with 256 requests being
requested concurrently. Because we look only at static
loads, the results will indicate a best-case scenario for
Apache.

MySQL MySQL is the traditional database server of choice

for websites. The most recent stable version is MySQL
5.1.50 Community Server, which we evaluated. To ex-
ercise it’s functionality, we ran the “sql-bench” bench-
marking scripts included with MySQL’s source code.

PARSEC The PARSEC benchmark suite [6] is a set of
parallel applications largely targeting RMS workloads.
We executed seven of the multithreaded benchmarks:
blackscholes, swaptions, fluidanimate, vips, x264, can-
neal and streamcluster.

We instrumented each of these applications using LiMiT
to track their critical sections and locking behaviors. Specifi-
cally, we collected information on the number of cycles spent
acquiring and releasing locks, and time spent with locks held.

Results The charts in Figures 5 and 6 summarize the
collected data. Figure 5 contains an overview of syn-
chronization overheads and critical section times. Execu-
tion time is computed as the total number of cycles in
all threads, lock and unlocking times as all time spent
in pthread_mutex_lock and pthread_mutex_unlock in all
threads. Lock held time, however, is defined as summation
of the amount of time each thread has at least one lock held;
if more than one lock is held, time is not double-counted.

These data show that this behavior varies a great deal
between the applications. Figure 6 contain histograms of
locking and unlocking overheads (latency of lock acquire and
release) and times spent in critical sections. We break down
this data by both dynamic locks (number of lock acquires
during execution) and static locks (number of lock instances
observed during execution), revealing insights about lock us-
age patterns. From this data, we make several observations:

Critical Section Times The histograms in Figure 6 indi-
cate that the manner in which each application uses
locks varies. PARSEC, for instance, holds locks for
very short amounts of time in stark contrast to MySQL
and Firefox. (See Table 2.) This is likely because many
of PARSEC’s applications parallelize nicely, e.g., using
data parallelism and static assignment. The other ap-
plications, however, are interactive and must respond
to events as they occur. Since this makes static as-
signment impossible, threads must interact more often,
requiring more synchronization.

Number of Locks The previous point is further sup-
ported by the number of locks shown in Ta-
ble 2. Highly interactive applications like Firefox and
MySQL require significantly higher number of locks.
PARSEC is likely able to use only barrier-like con-
structs to synchronize computation.

Based on this data, we will attempt to answer the ques-
tions set forth. To answer our first question, about locking
patterns in web workloads, we observe that synchroniza-
tion is a mixed bag in web applications. Some workloads,
like Apache, are likely to be very parallel and scale easily.
MySQL does not fit into this category as it does not scale
as easily. Additionally, Firefox has far more synchroniza-
tion overheads then one would expect. Based on personal
experience with Mozilla code, we suspect this is a result of
difficulties in parallelizing legacy “spaghetti” code which is
likely to have many side effects which must be isolated from
other threads.

!"#
$!"#
%!"#
&!"#
'!"#
(!"#
)!"#
*!"#
+!"#
,!"#
$!!"#

-./0123#
4.5.6#

789:;0#
4.5.6#

<9/=0:#
4.5.6#

5>?@4#
4.5.6#

789:;0#
<7<A#

<9/=0:#
<7<A#

5>?@4#
<7<A#

!"
#$
"%

&'
("
)*
+),

*&
'-
).
/"
#)0

1$
-"
/)

!#*(#'2)34"$56*%),72")8#"'9:*;%)<1)
=1%$>#*%7?'6*%)@"(7*%)

-/00#

42:B#

42:B#C0DE#

FGD2:B#

(a) Synchronization overheads

!"!!#$!!%

&"!!#$''%

'"!!#$'(%

'"&!#$'(%

("!!#$'(%

("&!#$'(%

)*+,% -./.0% 1,234,5,+6% 7879%

!"
#$
%&
&'(

)$
*%
&'

+,&-"./%,-01#,'234"0")'

5)672'89%$.1#,'()$*%&':;&%"'<3/%='

(b) MySQL cycles counts

Figure 5: Comparison of synchronization and critical section timing for various popular applications and the
PARSEC benchmark suite along with execution times for MySQL. Results obtained with PAPI are inflated
due to instrumentation overheads. We also see that PAPI instrumentation increases userspace cycle counts
by more than 745% compared to LiMiT’s 42% increase. We also note that Firefox (being an interactive
program) could not execute with PAPI instrumentation.

Firefox Apache PARSEC MySQL
Average Lock Held Time 789 149 118 1076

Dynamic Locks per 10k Cycles 3.24 1.12 0.545 3.18
Static Locks per Thread per Application 57 1 17 13853

Table 2: Locking-related averages. We note that the vast majority of PARSEC’s static locks are observed
in one benchmark: fluidanimate. Without this benchmark, the number of static locks per thread per appli-
cation drops to 0.575. These data indicate that scientific and web workloads have significant difference in
synchronization behavior.

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

($!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

$)*# $)'# $)+# $)(!# $)((# $)($# $)(,# $)(%#

-./012# 3452678# 9:;<=# >/5?20#

Unlocking	 TimeLock	 Held	 TimeLocking	 Time

Pe
rc
en
ta
ge
	 o
f

D
yn
am

ic
	 L
oc
ks

Pe
rc
en
ta
ge
	 o
f

St
a9

c	
Lo
ck
s

Less	 than	 2	 	 cyclesn Less	 than	 2	 	 cyclesnLess	 than	 2	 	 cyclesn

Synchroniza9on	 and	 Cri9cal	 Sec9on	 Cycle	 Count	 Histograms

Figure 6: Histograms of synchronization overheads and critical section times for several applications. Times
are broken down by dynamic locks (number of lock acquisitions) and average for each static lock (observed
lock instance). We note that many critical section times are very short, comparable in cycle counts to lock
acquisition times.

Implications for Architects (#1, #2, #3) Our sec-
ond question — How are architects affected by these results
and what future directions would best support the web? —
bears further analysis. There are several interesting points:

1: A new benchmark suite of web software may be neces-
sary for new web-centric architecture research. SPEC
has several versions of the “SPECweb” benchmark;
future studies should include comparisons. How-
ever, many of the applications we have reviewed
and other important cloud workloads are not part
of SPECweb, including Firefox, Javascript, website
supporting databases (non-transactional workloads),
server caching and load balancing.

2: Our data show locking overheads can be non-trivial
compared to critical section times. Since lock-
ing/unlocking overheads can be 8% to 13% of overall
cycles, speedups in this range may be possible with ar-
chitectural/software techniques for streamlining lock
acquisition. Further, we observe that the static lock
distributions differ from the dynamic lock distribu-
tions, suggesting that one may be able to statically
determine which locks are likely to be contended and
which are likely to be held for many cycles.

3: Critical section times for MySQL are relatively large.
In particular, over half of the lock instances have av-
erage lock hold times around 8,000 cycles (although
they are locked less often). These represent segments
of code which will not scale well. These regions are
prime targets for microarchitectural optimization. If
they can be sped up, parallel performance and scala-
bility of MySQL will improve.

5. CASE STUDY B: KERNEL/USERSPACE
OVERHEADS IN RUNTIME LIBRARY

Our next case study is aimed at examining the interaction
of programs with the Linux kernel via popular library calls
and understanding their impact on program performance.
A prior study has shown that kernel calls can negatively
impact performance by polluting branch predictors [11]. Are
there other on-chip structures that are affected by kernel
calls? To what degree are modern applications affected by
their kernel interaction? Is it possible to obtain fine-grained
information about execution that can be tracked back to
originating function calls? Our goal is to use LiMiT to
study common library functions’ behaviors in both userspace
and kernel space.

Necessity of LiMiT There are two alternatives to using
LiMiT for collecting this data.

First, simulation can be used to study the interaction of
user and kernel code. Full system multiprocessor simulators
can model the effect of system interaction and can shed light
on effect of library calls but can be prohibitively slow with-
out scaling workloads. Although LiMiT cannot achieve the
accuracy and detail level of simulation, it can be used to
rapidly gather precise information and coarsely locate prob-
lem regions.

The second option is sampling with external interrupts.
This style of sampling provides an interrupt every N events
at which point the sampling interrupt can analyze the appli-
cation’s execution state. In this study, however, we must de-
termine which library functions use processor resources and

the purpose of the function calls. For instance, we would like
to know whether memcpy is manipulating program data or
copying data for I/O. Obtaining this data in both user and
kernel space is difficult for sampling-based methods as each
sample interrupt must also run a stack trace (often from the
kernel stack all the way back to and through the user stack)
to identify the library entry point. To our knowledge, no
existing sampling tool is able to track kernel function usage
back to the calling userspace function. While theoretically
possible for sampling, LiMiT makes this approach down-
right easy. With LiMiT, we read counters at the entry and
exit points of functions in each category, so all events occur-
ring between the function entry and exit, including all func-
tions called from within the function, are counted towards
that function. For example, if pwrite calls memcpy inter-
nally or the kernel executes some locking functions during
a read system call, any microarchitectural events resulting
from the memcpy or kernel locking will count towards pwrite
or read rather than memory or locking categories.

Experimental Setup To examine the effects of kernel
code, we intercept and instrument functions in libc and
pthreads. During calls to these libraries, we count cycles,
L3 cache misses and instruction cache stalls in user space
and kernel space separately. After collecting data, we ag-
gregate the data from each function into three separate cat-
egories: I/O, memory and pthreads. I/O contains functions
such as read, write and printf whereas memory has func-
tions like malloc and memset. Pthreads contains all of the
commonly-used synchronization functions. We look at two
important systems applications, Apache and MySQL, using
the workloads described in Section 4.

Results The results of this study are shown in Figures 7,
8 and 9. Figure 7 reveals potential inefficiencies. First,
we observe that MySQL spends over 10% of its execution
cycles in kernel I/O functions. Apache spends a comparable
amount of time, but also spends a large amount of time in
user I/O code. Overall, in fact, Apache spends the majority
(about 61%) of its cycles in library code. Looking at cache
information, Figure 7b shows that kernel I/O experiences far
more cache misses per kiloinstruction than userspace code.
The last chart, Figure 7c helps explains further, revealing
extremely poor instruction cache utilization in kernel mode,
especially in I/O functions.

Figures 8 and 9 show the CPI and last level cache misses
for the worst performing functions in libc plus aggregates
of userspace code, kernel code, library functions and normal
program code. These data show that kernel code does not
perform as well as userland code and that several functions
perform very poorly, especially in terms of cache misses. In
particular, the math function floor performs very poorly
(due largely to cache misses) though it does not contain
a kernel call. Fortunately, MySQL does not call it often
(241 times compared with 4.4e8 times for memcpy). The
infrequent calls and last level cache miss results suggest that
that poor temporal locality and prefetching of mathematical
constants or code in libm may be to blame for the poor
performance.

Implications for Architects (#4,#5,#6)
The first important result from this data is that system

applications have a lot of kernel interaction and their behav-
ior in kernel regions is markedly different from userspace. As
a result, userspace-only simulation misses potentially impor-
tant information. Additionally, there are two key observa-

!"#
$"#
%!"#
%$"#
&!"#
&$"#
'!"#
'$"#
(!"#
($"#
$!"#

)*+,-#
./0123#

)*+,-#
.4125163#

789:;1#
./0123#

789:;1#
.4125163#

!"
#$
"%

&'
("
)*
+),
*&
'-
).
/$
-"
0)

12"$34*%)./$-"0)5%)657#'#/).'--0)

<=;219>0#

)1?@2*#

ABC#

(a) Cycles in Library Functions

!"

!#$"

%"

%#$"

&"

'()*+",-./01"'()*+",2/03/41"56789/",-./01"

!"
#$

%&
'#

!"#()*+,#$-..,.#/,0#&-12-3.405*623#

:;<" '/=>0(" ?@90/7A."

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'()*+,"
-.,/0,12"

(b) Last Level Cache Misses

!"#

$"#

$"#

%"#

%"#

&"#

&"#

'()*+#
,-./01#

'()*+#
,2/03/41#

56789/#
,-./01#

56789/#
,2/03/41#

!"
#$
"%

&'
("
)*
+),
*&
'-
).
/$
-"
0)

12.'$3")4&'--)./$-"0)

:;<# '/=>0(# ?@90/7A.#
22.4% 12.0%

(c) ICache Stalls

Figure 7: Various user space and kernel space microarchitectural events occuring in categories of library
functions. Comparing userspace to kernel, we see that kernel code behaves very differently than userspace
code. Please note the different scale in (b) for Apache in kernel space.

!"

#"

$"

%"

&"

'!"

(
)*
+"

,*
+-
*.
"

/0
12
"

3+
45
+6
7
"

7
*7

28
9"

7
*7

7
4:
*"

7
;<
*=
>;

-.
42
?"

7
;<
*=
>.
42
?"

8<
@>

5*
<)
8*

20
A2
"

)<
+2
7
8"

+B
.4
2?
>;

-.
42
?"

+B
.4
2?
>+
C.
42
?"

)<
+.*

-"
>>
7
*7

28
9>
DD"

7
*7

)*
<"

7
6.
.4
2"

E+
**
"

>>
*+
+-
4>

.4
2D
D"

8B
+0<
*"

5*
F
7
*4

EC
69
"

+B
.4
2?
>B

+.4
2?
"

+*
6C
"

8<
@+
*6
C>

)*
.E"

8<
@>

)*
<)
2@
DD"

)<
82
89
"

8+
*6
C"

B
+0<
*"

G7
*"

+B
.4
2?
>0
-0
<"

)<
+-
.*
-"

)<
+-
27

8"
)<
+2
@+
"

.)*
*?
"

2*
0."

>>
2=
6>
6<
*=
0<"

)<
+2
6)
*2
7
8"

+*
6.
.4
2"

H4
4+
"

8<
@+
*6
C>

4-
2*
"

7
;<
*=
>0
-0
<"

E5
*<
)"

2.
4)
*"

)<
+<
4.
"

48
*-

"
26
..4
2"

+*
6C
.0-
?"

8<
@>

)*
<)
8*

20
A2
"

5*
<*
-:
"

)<
+-
26
)*
27

8"
)<
++
2@
+"

5*
<8
0C
"

E2
.4
)*
"

E4
8*

-"
I
;)
@"

5*
<*
;0
C"

E4
8*

-%
$"

)8
+0-

J"
5*
<;
0C
"!"

#$
%&
'(
)*
'+,

&-
*.
$/
#,

'

!0+'#1'234*5*6'7.,$/#,&'3,'869:2'
29.5 10.3

Aggregate
Measures

Sorted	 by	 Number	 of	 Func6on	 Calls

4.4e8	 Calls

1	 Call29	 Calls
241	 Calls

Figure 8: Cycles per instruction for various library functions executed by MySQL are listed here, sorted by
number of calls. We see that in many cases, code in the dynamically linked library performs worse than
typical program code. The same is true of kernel code to an even greater extent. Although performance is
particularly poor for functions like floor and getpid, they are not called often and thus do not affect overall
speed.

!"#$$%
!"#$!%
!"#$&%
!"#$'%
!"#$(%
!"#$)%
!"#$*%
!"#$+%
!"#$,%
!"#$-%

.
/0
1%

20
13
04
%

56
78
%

91
:;
1<
=
%

>?
16
@0
%

10
<A
%

>1
0<
A%

=
B@
0C
DB

34
:8
E%

?
16
@0
%

=
0=

8>
F%

=
B@
0C
D4
:8
E%

>@
GD

;0
@/
>0

86
H8
%

84
:/
0%

I1
00
%

1?
4:
8E
DB

34
:8
E%

=
<4
4:
8%

=
0=

/0
@%

=
0=

=
:J
0%

>@
GD

/0
@/
8G
0A

>1
6:
%

;0
K
=
0:

IA
<F
%

1?
4:
8E
D6
36
@%

1?
4:
8E
D1
A4
:8
E%

/@
18
=
>%

/@
>8
>F
%

10
<4
4:
8%

1?
4:
8E
D?

14
:8
E%

L=
0%

DD
01
13
:D

4:
8<
L:

3%
:>

03
%

4/
00
E%

/@
14
03

%
M:

:1
%

>@
GD

/0
4I%

>@
GD

:3
80
%

DD
=
0=

8>
FD
8G
E%

8<
44:
8%

DD
8C
<D
<@
0C
6@%

I;
0@
/%

=
B@
0C
D6
36
@%

10
<A
463
E%

I:
>0

3%
/@
13
8=

>%
/@
18
G1
%

I:
>0

3*
(%

/@
13
40
3%

;0
@0
3J
%

I8
4:
/0
%

;0
@>
6A
%

80
64%

/@
11
8G
1%

/@
18
</
08
=
>%

/@
1@
:4
%

>@
GD

/0
@/
>0

86
H8
%

/@
13
8<
/0
8=

>%
N
B/
G%

/>
16
3O

%
;0
@0
B6
A%

!"
#$
%&
'(

#)
*+
+(
+#
,!
-.
#/
&%
0(
1#

!*23%34#!%+5#!(6(0#$%&'(#)*++(+#*7#)4/8!#Aggregate
Measures Sorted	 by	 Number	 of	 Cache	 Misses

Figure 9: L3 cache misses in various dynamically linked library functions show that a handful of library
functions account for a large portion of all the cache misses. Many of these functions result in kernel calls
which suffer from abnormally high cache miss rates, as seen in Figure 7b. The MySQL benchmark executed
for these data uses a database growing up to 45MB in size, relative to 8MB of CPU cache.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-./01#
'2$#3%!!'4#

-./01#
(2!#3%!!(4#

-./01#
(2$#3%!!+4#

-./01#
(2(#356789#
%!!,4#

-./01#)#
3:;<=89#
%!$!4#

!"
#$
"%

&'
("
)*
+),

-"
$.
/
*%

)

01234)21%$5*%67'/*%)869":)

>?66#

1@ABCDE#

1@AB#F6;G#

HD;@ABCDE#

(a) Locking and Lock Held Times

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'%!!"

'&!!"

!("

)("

'!("

')("

#!("

#)("

*!("

*)("

$!("

$)("

+,-./"
$0'"

1#!!$2"

+,-./"
)0!"

1#!!)2"

+,-./"
)0'"

1#!!&2"

+,-./"
)0)"134567"
#!!82"

+,-./"%"
19:;<67"
#!'!2"

!
"#
$%
&#
'(
)*

+#
$'
,-
'.
/0
1#
2'

3,
04
'52
'6
#1
7'

8#
$0
#9

:%
&#
',
-';

<#
0)
=
,9

'
>
5:
?'
3,
04
'6
#1
7'

@/AB3'.$5=0%1'A#0=,9'C5*#2'

=>4?6::"@AB4"CA5<"/DEF"G4:H" 9>I0"/DEF"GD:H"@AB4"

(b) Lock Held Times

!"#$!!%

&"#$!'%

("#$!&%

)"#$!&%

)"#$!&%

*"#$!&%

*"#$!&%

'"#$!&%

!"#$!!%

("#$!+%

)"#$!+%

*"#$!+%

'"#$!+%

&"#$!+%

,"#$!+%

-./01%
'"(%2)!!'3%

-./01%
&"!%2)!!&3%

-./01%
&"(%2)!!+3%

-./01%
&"&%245678%
)!!93%

-./01%,%
2:;<=78%
)!(!3%

!"
#$

%&
'(
%)
*&

+
,-
#.

/%
&'
(%
)*
&

01.234&(5&'(%)*&/-&6,!7'&

>.?7@AB%1CBDE% /67FB%1CBDE%

(c) Static and Dynamic Locks

Figure 10: A history of synchronization in MySQL. With the exception of MySQL 6 (a likely un-optimized
alpha-quality version), time with locks held and time getting locks (contention and overhead) has decreased
since version 4.1.

tions in the above data which indicate potential avenues for
optimization:

4: The Apache results show the importance of I/O opti-
mization. Apache spends much time interacting with
the kernel, incurring significant overheads. Hardware
support to allow Apache (and similar programs) to cir-
cumvent the kernel to do its I/O could drastically de-
crease its latency and increase throughput.

5: Poor instruction cache behavior in kernel mode may
indicate that the processor is unable to prefetch kernel
instructions before interrupts occur. It should be pos-
sible for a hardware prefetcher to determine the system
call number and prefetch the necessary upcoming in-
struction code, avoiding I-Cache misses.

6: Finally, this LiMiT-obtained data has identified sev-
eral problem points in real applications with unscaled
workloads. With LiMiT, a process that would have
taken months using simulators took only 3 days. If mi-
crobenchmarks can be designed to capture these bot-
tlenecks, they can be used in full system simulation.
This style of combining LiMiT’s precise event counter
approach with detailed simulation may be necessary
for quantitative architecture research in the cloud era.

6. CASE STUDY C:
LONGITUDINAL STUDY OF LOCKING
BEHAVIOR IN MYSQL

Embarking on parallelization is often a risky investment
with little guarantee of performance improvements due to
the difficulties in writing multithreaded code. Many organi-
zations that have legacy sequential codes are hesitant to in-
vest in parallelization without quantitative models that can
be used to predict return of investment on parallelization.
LiMiT offers capabilities to build such a model.

In this case study, we use LiMiT to examine the bene-
fits of adapting software to multicores over multiple versions
spanning years. To examine software development progress,
we examine several versions of MySQL, an extremely popu-
lar database management system. Gartner Group estimates
that 50% of IT organizations had MySQL deployments in
2008, making MySQL a very common workload. As an

open source product, we are also able to access its source
code from many versions going back to 2004. Releases from
2004 on are beneficiaries of increased market penetration of
multicore machines, increasing pressure on MySQL to use
multithreading for performance.

Goals We will attempt to answer the following questions
using behavioral information: (1) Has synchronization in
MySQL changed through versions? (2) Has the amount of
time in critical sections changed? We will use these questions
to judge if MySQL developers have improved at multicore
development since the widespread availability of multicore
systems.

Necessity of LiMiT As in case study A, we are exam-
ining fine-grained program sections: lock acquires/releases
and critical sections. To avoid perturbation, interference
from multiple threads and error introduced by sampling, we
require LiMiT’s low-overhead reads, process isolation and
precision. Sampling is a poor option for the same reasons as
given in case study A.

Experimental Setup To answer these questions, we in-
tercept mysqld calls to the pthread library’s locking routines
to insert timing instrumentation. All versions of MySQL
were compiled and executed on identical systems, so they
all use the same, recent version of pthreads. As input, we
run the “sql-bench” benchmark suite supplied with MySQL.

Results The results of this study are shown in Figure 10.
They indicate that synchronization efficiency has increased
since the 4.1 series, first introduced in 2004. Figure 10a
examines overall times in synchronization and critical sec-
tions. Figure 10b rehashes the critical section results from
the previous chart and overlays the average lock held time.
Finally, Figure 10c examines the number of static and dy-
namic locks observed during execution. There are several
interesting points to note:

Average Lock Held Times MySQL developers have de-
creased the total amount of time spent with locks held
while simultaneously increasing the average amount of
time each lock is held. This implies that the function-
ality of multiple critical sections has been combined.
For low-contention critical sections, this increases over-
all efficiency by avoiding lock overheads.

Lock Granularity The number of static and dynamic
locks have both decreased. This implies that – on av-

erage – lock granularity has increased. Although this
could increase contention, it has not come at that cost,
so this granularity shift has likely been carefully tuned.

Alpha Version MySQL 6, the alpha version, is an outlier
with respect to recent versions. This is likely because
it has not yet been optimized with respect to lock-
ing and new features have been implemented in overly
conservative fashions.

To answer our initial questions, both synchronization
overheads and critical section times have decreased over
time. These performance improvements clearly show that
developers have become more skilled, likely a result of mul-
ticore availability as parallel machines were not commonly
available to hobbyist hackers before 2004.

Implication for Architects (#7): While this is pri-
marily a software engineering/project management study –
and to the best of our knowledge the first study to use pre-
cise performance counters for software engineering – there is
a very important take away point here for computer archi-
tects: there is a potentially broader consumer base for on-
chip performance counter data beyond computer architects,
OS and compiler writers. Computer architects should take
this into consideration when designing future hardware mon-
itoring systems. Broadly, this means that monitors should
be optimized not to capture just the common execution cases
but also uncommon cases which are interest in domains such
as software engineering and security.

7. HARDWARE ENHANCEMENTS FOR
BETTER PRECISE PERFORMANCE
COUNTING

Precise performance measurement does not appear to be
an intended application for performance counter architec-
tures today. Some modest modifications to existing per-
formance monitoring hardware can reduce the complexity
and overheads of precise counting with tools like LiMiT.
The operations suggested below will reduce LiMiT’s read
routine from five instructions down to one and reduce the
overhead of frequent counter usage patterns. Such low over-
heads would encourage programs to self-monitor and adapt
to changing conditions.

Enhancement #1: 64-bit Reads and Writes
LiMiT’s overflow handling is necessitated by a lack of full
64-bit read and write support. With 31-bit counters, the
counters can overflow every 0.72 seconds, but with 64-bit
support they would require centuries to overflow. Until such
simple support can be added LiMiT will have a vital role
in low overhead precise performance measurement.

Enhancement #2: Destructive Reads When charac-
terizing code segments, a difference in counts between two
points in the program is often required. A destructive read
instruction – one that zeros the counter after reading it –
could eliminate the currently necessary subtraction in many
cases when counters are used.

Enhancement #3: Combined Reads Currently, the
x86 performance counter read instruction requires that the
%ecx register contain the number of the counter to read.
Were this integrated into the instruction as an immediate,
another instruction would be eliminated.

A further proposal for hardware support is AMD’s
Lightweight Profiling [2]. Unfortunately, LWP is not avail-

able on existing processors, making LiMiT valuable for re-
search today.

8. CONCLUSION
Our paper makes the following contributions: (1) We have

described a lightweight, precise interface to performance
counters on contemporary hardware. (2) We have conducted
case studies to demonstrate the utility of precise monitor-
ing to architects. Based on data collected with LiMiT, we
offer new insights on program behavior which were not pos-
sible with existing tools. (3) Based on our experience with
LiMiT, we suggest hardware support to decrease the cost
of accesses to performance counters.

To continue having real world impact, architects must be
engineers, designing machines to accelerate a wide variety
of new applications and usage models. As scientists, archi-
tects also need to conduct rigorous, reproducible research
studies. While this latter goal can be achieved with sim-
ulation technology available today, it has been challenging
for simulators to keep pace with rapid changes in the soft-
ware landscape. Tools such as LiMiT help architects keep
pace with new software, potentially using the insights gained
to develop fast, robust, representative microbenchmarks for
simulation based studies.

As a demonstration of the usefulness of precise perfor-
mance monitoring capabilities offered by LiMiT, we con-
ducted three case studies on current web workloads. These
studies lead us to the following conclusions:

• A new benchmark suite is recommended for research in
computer architectures for the cloud era because traditional
multithreaded benchmarks have different execution charac-
teristics than multithreaded applications frequently used to-
day.

• Web applications tend to have many very short critical
sections which could be sped up with architectural support
for lighter weight synchronization. Since the total overhead
of lock acquisition and release is about 13% and 8% for Fire-
fox and MySQL respectively, speedups in that range may be
possible.

• Dynamically linked libraries and kernel code suffer from
poor microarchitectural performance and also make up sub-
stantial portions of run time for system applications. Fur-
ther research to enhance this performance could significantly
accelerate web workloads.

• Performance counters have far wider applicability than
just computer architecture (e.g., software engineering) and
architects designing performance counter systems should
consider other applications.

These insights were made possible by precise, low-
overhead performance monitoring capabilities provided by
the LiMiT tool. These features allow monitoring of par-
allel programs more precisely than existing sampling based
tools. In LiMiT we revisited and re-architected existing
performance counter access methodologies (which had not
been revised in the past decade). Specifically, we used novel
kernel/user space cooperative techniques to allow user space
readouts of performance counters. As a result, LiMiT is at
least an order of magnitude faster than its existing state-
of-the-art alternative, and reduces instrumented execution
overheads significantly. In short, LiMiT can read virtu-
alized counters in less than 12 nanoseconds, allowing pre-
cise measurements at finer granularities than have ever been
studied.

Much of LiMiT’s implementation complexity and execu-
tion cost was due to suboptimal hardware support. LiMiT
can be further optimized with minimal additional hardware
support. Specifically, we suggest the following ISA changes
for future architectures: (1) increasing the counter size to 64-
bit and allowing full 64-bit reads and writes, (2) including a
destructive read instruction and (3) integrating counter se-
lection into the read instruction. These three simple modifi-
cations would drastically reduce complexity and allow single
instruction readouts.

LiMiT is a significant step towards rapid, precise program
characterization and is now available at http://castl.cs.

columbia.edu/limit. We are planning integration with
perf event to provide LiMiT’s benefits to all Linux users.

9. ACKNOWLEDGMENTS
We thank Prof. Steve Blackburn, Prof. Mark Hill, Dr.

Viji Srinivasan, Dr. Dick Sites, anonymous reviewers and
members of the Computer Architecture and Security Tech-
nologies Lab (CASTL) at Columbia University for their
feedback on this work. Research conducted at CASTL is
funded by grants from DARPA, AFRL (FA8750-10-2-0253,
FA9950-09-1-0389), the NSF CAREER program, gifts from
Microsoft Research and Columbia University, and software
donations from Synopsys and Wind River.

10. REFERENCES
[1] Linux kernel 2.6.32, perf_event.h.

[2] Amd64 technology lightweight profiling specification,
revision 3.08, 2010.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill,
and David A. Wood. Dbmss on a modern processor:
Where does time go? pages 266–277, 1999.

[4] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean,
Sanjay Ghemawat, Monika R. Henzinger, Shun-Tak A.
Leung, Richard L. Sites, Mark T. Vandevoorde,
Carl A. Waldspurger, and William E. Weihl.
Continuous profiling: where have all the cycles gone?
ACM Trans. Comput. Syst., 15(4):357–390, 1997.

[5] Brian N. Bershad, David D. Redell, and John R. Ellis.
Fast mutual exclusion for uniprocessors. SIGPLAN
Not., 27:223–233, September 1992.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications. In
Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques,
October 2008.

[7] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger,
William E. Weihl, and George Chrysos. Profileme:
hardware support for instruction-level profiling on
out-of-order processors. In MICRO 30: Proceedings of
the 30th annual ACM/IEEE international symposium
on Microarchitecture, pages 292–302, Washington, DC,
USA, 1997. IEEE Computer Society.

[8] Joel S. Emer and Douglas W. Clark. A
characterization of processor performance in the
vax-11/780. In ISCA ’84: Proceedings of the 11th
annual international symposium on Computer
architecture, pages 301–310, New York, NY, USA,
1984. ACM.

[9] Stijn Eyerman and Lieven Eeckhout. Modeling critical
sections in amdahl’s law and its implications for
multicore design. SIGARCH Comput. Archit. News,
38:362–370, June 2010.

[10] Kimberly Keeton, David A. Patterson, Yong Qiang
He, Roger C. Raphael, and Walter E. Baker.
Performance characterization of a quad pentium pro
smp using oltp workloads. SIGARCH Comput. Archit.
News, 26(3):15–26, 1998.

[11] Tao Li, Lizy Kurian John, Anand Sivasubramaniam,
N. Vijaykrishnan, and Juan Rubio. Understanding
and improving operating system effects in control flow
prediction. SIGPLAN Not., 37:68–80, October 2002.

[12] Shirley Moore. A comparison of counting and
sampling modes of using performance monitoring
hardware. In Peter Sloot, Alfons Hoekstra, C. Tan,
and Jack Dongarra, editors, Computational Science –
ICCS 2002, volume 2330 of Lecture Notes in
Computer Science, pages 904–912. Springer Berlin /
Heidelberg, 2002.

[13] Oprofile. http://oprofile.sourceforge.net/.

[14] Perfmon2. http://perfmon2.sourceforge.net/.

[15] Rabbit, a performance counters library for intel/amd
processors and linux.
http://www.scl.ameslab.gov/Projects/Rabbit/.

[16] Dr. Richard Sites. Personal communications.

[17] Intel vtune.
http://software.intel.com/en-us/intel-vtune/.

[18] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz.
Performance analysis using the mips r10000
performance counters. In Supercomputing, 1996.
Proceedings of the 1996 ACM/IEEE Conference on,
pages 16–16, 1996.

http://castl.cs.columbia.edu/limit
http://castl.cs.columbia.edu/limit
http://oprofile.sourceforge.net/
http://perfmon2.sourceforge.net/
http://www.scl.ameslab.gov/Projects/Rabbit/
http://software.intel.com/en-us/intel-vtune/

	The Need for Rapid, Precise Event Counting
	Performance Counters Review
	Enabling Low-overhead Performance Counter Access
	Comparison to Sampling
	Comparison to PAPI and perf_event
	Comparison to RDTSC Measurements

	Case Study A:Locking in Web Workloads
	Case Study B: Kernel/Userspace Overheads in Runtime Library
	Case Study C:Longitudinal Study of Locking Behavior in MySQL
	Hardware Enhancements for Better Precise Performance Counting
	Conclusion
	Acknowledgments
	References

